Close Menu
TechCentralTechCentral

    Subscribe to the newsletter

    Get the best South African technology news and analysis delivered to your e-mail inbox every morning.

    Facebook X (Twitter) YouTube LinkedIn
    WhatsApp Facebook X (Twitter) LinkedIn YouTube
    TechCentralTechCentral
    • News

      Telkom warns Icasa call rate cuts will punish smaller players

      13 June 2024

      MultiChoice will ride out Nigeria chaos

      13 June 2024

      Showmax reports R2.6-billion in trading losses

      13 June 2024

      Big section of 2Africa subsea cable is now live

      12 June 2024

      MultiChoice sheds 9% of its subscriber base in 12 months

      12 June 2024
    • World

      SpaceX sued by engineers fired after accusing Elon Musk of sexism

      13 June 2024

      Elon Musk withdraws lawsuit against OpenAI

      12 June 2024

      Investors cheer Apple AI strategy

      12 June 2024

      High-fidelity audio is finally coming to Spotify

      11 June 2024

      Musk threatens to ban Apple devices over OpenAI integration

      11 June 2024
    • In-depth

      It’s Jensen’s world now

      6 June 2024

      From Talkomatic to WhatsApp: the incredible history of instant messaging

      28 May 2024

      The 20 most influential tech products of all time

      22 May 2024

      Early signs that AI is fuelling a productivity boom

      21 May 2024

      GPT-4o is a stunning leap forward in AI

      18 May 2024
    • TCS

      TCS+ | Telco or ISP? Tired of load shedding chaos? This is for you

      13 June 2024

      TCS+ | Check Point dissects the complexities of cloud security

      11 June 2024

      TCS | MultiChoice declares war on piracy – the man leading the fight

      10 June 2024

      TCS+ | ESET’s Adrian Stanford: how AI will transform cybersecurity

      10 June 2024

      TCS+ | Pinnacle CEO on how AI is going to transform SA business

      6 June 2024
    • Opinion

      Lessons from healthcare for navigating South Africa’s energy crisis

      12 June 2024

      How to maximise solar panel performance in winter

      11 June 2024

      Corrupt municipalities crushing affordable connectivity in South Africa

      4 June 2024

      Post Office debacle shows ANC is out of ideas

      28 May 2024

      Should the SABC have discretion to reject a political ad?

      19 May 2024
    • Company Hubs
      • 4IRI
      • Africa Data Centres
      • Altron Document Solutions
      • Altron Systems Integration
      • Arctic Wolf
      • AvertITD
      • CallMiner
      • Calybre
      • CoCre8
      • CYBER1 Solutions
      • Digicloud Africa
      • Digimune
      • Domains.co.za
      • E4
      • Entelect
      • ESET
      • Euphoria Telecom
      • iKhokha
      • Incredible Business
      • iONLINE
      • Iris Network Systems
      • LG Electronics
      • LSD Open
      • Maxtec
      • MiRO
      • NEC XON
      • Network Platforms
      • Next DLP
      • Ovations
      • Paratus
      • Ricoh
      • Skybox Security
      • SkyWire
      • Velocity Group
      • Vertiv
      • Videri Digital
      • Workday
    • Sections
      • AI and machine learning
      • Banking
      • Broadcasting and Media
      • Cloud services
      • Cryptocurrencies
      • Education and skills
      • Electronics and hardware
      • Energy and sustainability
      • Enterprise software
      • Fintech
      • Information security
      • Internet and connectivity
      • Internet of Things
      • Investment
      • IT services
      • Lifestyle
      • Motoring
      • Public sector
      • Retail and e-commerce
      • Science
      • Social media
      • Talent and leadership
      • Telecoms
    • Events
    • Advertise
    TechCentralTechCentral
    Home » In-depth » Particle physics could be about to get super weird

    Particle physics could be about to get super weird

    By The Conversation6 November 2018
    Twitter LinkedIn Facebook WhatsApp Email Telegram Copy Link
    News Alerts
    WhatsApp
    A section of the Large Hadron Collider. Image: Maximilien Brice/Cern

    There was a huge amount of excitement when the Higgs boson was first spotted back in 2012 — a discovery that bagged the Nobel Prize for Physics in 2013. The particle completed the so-called standard model, our current best theory of understanding nature at the level of particles.

    Now scientists at the Large Hadron Collider (LHC) at Cern think they may have seen another particle, detected as a peak at a certain energy in the data, although the finding is yet to be confirmed. Again there’s a lot of excitement among particle physicists, but this time it is mixed with a sense of anxiety. Unlike the Higgs particle, which confirmed our understanding of physical reality, this new particle seems to threaten it.

    The new result — consisting of a mysterious bump in the data at 28GeV (a unit of energy) — has been published as a preprint on ArXiv. It is not yet in a peer-reviewed journal — but that’s not a big issue. The LHC collaborations have very tight internal review procedures, and we can be confident that the authors have done the sums correctly when they report a “4.2 standard deviation significance”. That means that the probability of getting a peak this big by chance — created by random noise in the data rather than a real particle — is only 0.0013%. That’s tiny — 13 in a million. So it seems like it must a real event rather than random noise — but nobody’s opening the champagne yet.

    Again there’s a lot of excitement among particle physicists, but this time it is mixed with a sense of anxiety

    Many LHC experiments, which smash beams of protons (particles in the atomic nucleus) together, find evidence for new and exotic particles by looking for an unusual build-up of known particles, such as photons (particles of light) or electrons. That’s because heavy and “invisible” particles such as the Higgs are often unstable and tend to fall apart (decay) into lighter particles that are easier to detect. We can therefore look for these particles in experimental data to work out whether they are the result of a heavier particle decay. The LHC has found many new particles by such techniques, and they have all fitted into the standard model.

    The new finding comes from an experiment involving the CMS detector, which recorded a number of pairs of muons – well known and easily identified particles that are similar to electrons, but heavier. It analysed their energies and directions and asked: if this pair came from the decay of a single parent particle, what would the mass of that parent be?

    Different sources

    In most cases, pairs of muons come from different sources — originating from two different events rather than the decay of one particle. If you try to calculate a parent mass in such cases it would therefore spread out over a wide range of energies rather than creating a narrow peak specifically at 28GeV (or some other energy) in the data. But in this case, it certainly looks like there’s a peak. Perhaps. You can look at the figure and you can judge for yourself.

    Is this a real peak or is it just a statistical fluctuation due to the random scatter of the points about the background (the dashed curve)? If it’s real, that means that a few of these muon pairs did indeed come from just a large parent particle that decayed by emitting muons — and no such 28GeV particle has ever been seen before.

    So it is all looking rather intriguing, but history has taught us caution. Effects this significant have appeared in the past, only to vanish when more data is taken. The Digamma(750) anomaly is a recent example from a long succession of false alarms — spurious “discoveries” due to equipment glitches, over-enthusiastic analysis or just bad luck.

    New data. CMS Collaboration

    This is partly due to something called the “look elsewhere effect”: although the probability of random noise producing a peak if you look specifically at a value of 28GeV may be 13 in a million, such noise could give a peak somewhere else in the plot, maybe at 29GeV or 16GeV. The probabilities of these being due to chance are also tiny when considered respectively, but the sum of these tiny probabilities is not so tiny (though still pretty small). That means it is not impossible for a peak to be created by random noise.

    And there are some puzzling aspects. For example, the bump appeared in one LHC run but not in another, when the energy was doubled. One would expect any new phenomena to get bigger when the energy is higher. It may be that there are reasons for this, but at the moment it’s an uncomfortable fact.

    New physical reality?

    The theory is even more incongruous. Just as experimental particle physicists spend their time looking for new particles, theorists spend their time thinking of new particles that it would make sense to look for: particles that would fill in the missing pieces of the standard model, or explain dark matter (a type of invisible matter), or both. But no one has suggested anything like this.

    For example, theorists suggest we could find a lighter version of the Higgs particle. But anything of that ilk would not decay to muons. A light Z boson or a heavy photon have also been talked about, but they would interact with electrons. That means we should have probably discovered them already as electrons are easy to detect. The potential new particle does not match the properties of any of those proposed.

    If this particle really exists, then it is not just outside the standard model but outside it in a way that nobody anticipated

    If this particle really exists, then it is not just outside the standard model but outside it in a way that nobody anticipated. Just as Newtonian gravity gave way to Einstein’s general relativity, the standard model will be superseded. But the replacement will not be any of the favoured candidates that has already been proposed to extend standard model: including supersymmetry, extra dimensions and grand unification theories. These all propose new particles, but none with properties like the one we might have just seen. It will have to be something so weird that nobody has suggested it yet.

    Luckily, the other big LHC experiment, Atlas, has similar data from their experiments The team is still analysing it, and will report in due course. Cynical experience says that they will report a null signal, and this result will join the gallery of statistical fluctuations. But maybe — just maybe — they will see something. And then life for experimentalists and theorists will suddenly get very busy and very interesting. The Conversation

    • Written by Roger Barlow, research professor and director of the International Institute for Accelerator Applications, University of Huddersfield
    • This article is republished from The Conversation under a Creative Commons licence
    Large Hadron Collider Roger Barlow top
    Subscribe to TechCentral Subscribe to TechCentral
    Share. Facebook Twitter LinkedIn WhatsApp Telegram Email Copy Link
    Previous ArticleTim Berners-Lee’s plan to fix the Web is unworkable
    Next Article Bill Gates gets serious about crap

    Related Posts

    Telkom warns Icasa call rate cuts will punish smaller players

    13 June 2024

    MultiChoice will ride out Nigeria chaos

    13 June 2024

    TCS+ | Telco or ISP? Tired of load shedding chaos? This is for you

    13 June 2024
    Company News

    How to harness customer insights in the age of information overload

    13 June 2024

    How LayUp is advancing lay-by payments in Africa

    12 June 2024

    Recapping an extraordinary month at Next DLP

    12 June 2024
    Opinion

    Lessons from healthcare for navigating South Africa’s energy crisis

    12 June 2024

    How to maximise solar panel performance in winter

    11 June 2024

    Corrupt municipalities crushing affordable connectivity in South Africa

    4 June 2024

    Subscribe to Updates

    Get the best South African technology news and analysis delivered to your e-mail inbox every morning.

    © 2009 - 2024 NewsCentral Media

    Type above and press Enter to search. Press Esc to cancel.